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Abstract A comparison of single event upset and 
latchup test results for devices operated at several bias 
levels, from 2.5V to 6V, is reported. Vulnerability to 
SEU increased with decreasing bias, whereas the 
opposite pattern was observed for SEL. The relation- 
ship between threshold SEU vulnerability and bias is 
not regular, which precludes the use of simple 
prediction schemes for obtaining the expected 
vulnerability at 3.3V from existing 5V data. 

Introduction 

In the past, the bias voltage (VDD) applied to CMOS 
logic devices in satellite payloads has typically been 
held at about 5V. As a result, the majority of single 
event upset (SEU) and latchup (SEL) test data has 
been obtained at this voltage.1 However, there has 
been a recent trend in consumer electronics toward 
reducing the bias voltage to 3.3V. Operation at 3.3V 
rather than 5V offers a number of advantages, the most 
obvious being reduced power consumption and heat 
generation. If other circuit characteristics (such as the 
signal to noise ratio and speed) are acceptable at 
reduced bias levels, then system operation at 3.3V 
provides a cost-effective alternative to 5V operation. 
The growing trend towards systems biased at 3.3V has 
also begun to influence space electronics systems, 
where power consumption is a vital concern. It is 
therefore important to assess the SEU and SEL 
vulnerabilities of CMOS devices at reduced bias 
voltage levels. 

Previous studies have found that the SEU vulner- 
ability of microcircuits increases with reduced bias 
voltage.2-3 However, SEU data for bias levels near 3V 
are very scarce. In 1981, Kolasinski et al. tested two 
CMOS RAM device types at 3.5V and 4V (the devices 
were also tested at several increased bias levels, up to 
9V). More recently, Roth et al., examined the SEU 
vulnerability of a single SRAM device type operated at 
between 2.5V and 6V, and concluded that the critical 
charge for upset varies linearly with the bias voltage. In 
contrast to the SEU vulnerability, the total dose perfor- 
mance is reportedly enhanced at reduced bias.4 

The present study examines the SEU and SEL 
susceptibility of microcircuits operated at reduced bias 
levels ranging from 2.5V to 6V, and considers the 
particular implications of these results to 3.3V 
operation. Of primary interest is the question of 
whether or not test data obtained at higher bias levels 
can be extrapolated to lower levels such as 3.3V. 

SEU Considerations 

The tested device types are listed in Table 1. The 
test samples were fabricated by National Semi- 
conductor in Fairchild's FACT™ technology; the feature 
size for these devices is 2 UJTI. Although the lot date 
codes indicate that the samples were manufactured in 
1989, these devices are essentially the same as the 
functionally equivalent device types in National's more 
recent Low Voltage Logic (LVQ) Family, which have a 
recommended operating bias of 3.3V. The principal 
advantage of the FACT devices for SEU testing is the 
wide range of bias potentials, nominally 2.5V to 6V, at 
which they can be operated. 

The devices listed in Table 1 were previously tested 
for SEU vulnerability at 5V.5 The present study extends 
this work by characterizing, when possible, the SEU 
vulnerability at several bias voltages: 2.5V, 3.3V, 4V, 
5V, and 6V. (Some device types did not operate either 
below about 2.5V or above about 6V.) Testing was 
performed at the Lawrence Berkeley Laboratory 88" 
cyclotron facility using Ar (180 MeV), Cu (290 MeV), Kr 
(380 MeV), and Xe (540 MeV) ions. The test metho- 
dology is described elsewhere.6 SEU cross-section 
curves for several bias levels are presented in Figs. 1 
through 4, respectively, for the four test device types 
listed in Table 1. 

Table 1. SEU Test Samples 

Device Tvpe Function Date Code 

54AC163 4-bit Binary Counter 8909 

54ACT174 Hex D Rip-Flop 8920 

54AC299 Octal Shift/Storage Register 8922 

54ACT373 Octal Transparent Latch 8948 

The threshold LET (linear energy transfer) of most 
devices decreased gradually as the bias voltage was 
reduced, as shown in Fig. 5. (The threshold LET was 
defined as the LET value at the point where the cross- 
section was about 5% of its saturation value.) 
However, the rate of decrease varied significantly from 
device type to device type. For example, 54AC163 
displayed very little threshold dependence, whereas for 
54ACT373 the threshold LET at 6V was nearly double 
the value at 2.5V. Furthermore, the relationship 
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Rg. 1. SEU Test Results for 54AC163 at Several Bias Levels 

between the bias and the threshold LET does not 
appear linear, nor, forthat matter, particularly regular. 
Notice, however, that the spread of threshold LET 
values is significantly smaller at reduced bias voltage 
than at higher levels. Thus, the variability in SEU 
susceptibility between device types belonging to the 
FACT family appears to be less at reduced bias levels. 

SEL Considerations 

The test device types listed in Table 1 were all 
immune to latch up, hence no SEL test data was 
obtained for these devices. The SEL study was instead 
carried out with a different device type, an ATMEL 
AT22V10B (CMOS PAL). Latchup susceptibility curves 
were obtained for this device at both 3V and 5V, as 
shown in Fig. 6. As can be seen, the latchup cross- 
section was substantially less in the reduced bias 
condition, especially at higher LETs. A similar test 
utilizing more bias levels (2V to 5V) was performed with 
a Toshiba TC5546 (8K x 8 CMOS SRAM). The test 
results, shown in Fig. 7, are consistent with the 
AT22V10Bdata. 

Latchup is triggered by the formation of parasitic 
bipolar transistors in a CMOS circuit.   The onset of 
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Fig. 2. SEU Test Results for 54ACT174 at Several Bias Levels 

1.0E-3 

1.0E-4 

1.0E-5- 

1.0E-6 

1.0E-7H 

1.0E-8 ♦   □  Upper limits 

20 
i 

40 60 
i 

80 100 
-r- 

120 140 

Effective LET [MeV/(mg/cn^] 

Rg. 3. SEU Test Results for 54AC299 at Several Bias Levels 

latchup for AT22V10B is illustrated in Fig. 6. When the 
device underwent latchup (due to the passage of a 
single ion), the bias current increased to about 1,000 
mA (see point D in Fig. 8). The irradiation was then 
halted, and the device current was gradually 
decreased, tracing the curve from D to C. The device 
remained in the latchup condition until point C (the 
holding point) was reached. The current was then 
decreased slightly, past the holding current, eliminating 
the latchup condition. 

At lower bias voltages, the gain of the parasitic 
transistors and the amount of charge collected from an 
impinging ion both decrease. These factors contribute 
to the observed decrease in latchup susceptibility at 
reduced bias levels. 

Other Single Event and Total Dose Effects 

CMOS (and possibly NMOS circuits) are also 
susceptible to single event snapback (SES).7 SES is 
caused by the activation of a parasitic n-p-n transistor in 
the n-channel. Since a reduction in the bias voltage 
decreases the necessary gain for the transistor, the 
likelihood of snapback formation is lessened at 
reduced bias levels.   Problems due to breakdown of 
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Rg. 4. SEU Test Results for 54ACT373 at Several Bias Levels 
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7. Latchup Test Results for TC5546 at Several Bias Levels 

parasitic bipolar transistors will also be lessened at 
reduced bias voltage. 

The total ionizing dose limit of microcircuits has 
been shown to increase at reduced bias levels.4 This 
is due to the reduced electrical field strength in the 
sensitive region, which increases the likelihood of 
electron-hole pair recombination (see below). For some 
devices, this total dose advantage is substantial.4 

SEU Phenomenology 

Charge collection is governed by the rate at which 
electrons and holes recombine after they are generated 
in (or near) the depletion region. Because the speed of 
charge carriers is essentially proportional to the electric 
field strength, a reduction in the field induces a 
proportional increase in the rate of charge recomb- 
ination, hence reduced residual charge. 

The thickness of the depletion region is approx- 
imately proportional to the square root of the applied 
field strength. Therefore, the volume in which the 
charge collection is effectively carried out is reduced by 
the square root of any reduction in the field strength. 

To cause upset the collected charge must overcome 
the charge stored at the sensitive node. Because the 
stored charge is effectively proportional to the bias 

voltage, reducing the bias causes a proportional 
decrease in the critical charge. 

Analytically then, one would expect the effect of 
reducing the bias voltage on the sensitive volume size 
to be small compared to the effect on the electron-hole 
recombination rate. In opposition to these effects is the 
decrease in stored charge at the sensitive node. The 
SEU test results reported above seem to indicate that 
the decreased critical charge predominates, hence the 
increased SEU susceptibility observed in the tests. 

The upset thresholds obtained from SPICE 
simulations at various bias levels increase smoothly 
with increasing bias voltage, as shown in Fig. 9. 
However, it is not clear that SPICE successfully 
captures the subtle dependencies that exist in real- 
world interactions between charged particles and 
silicon devices. Detailed knowledge of device circuits 
is also needed to produce more realistic simulations. 

Discussion 

Present data indicate that CMOS devices operating 
at 3.3V will be more susceptible to SEU, but less 
vulnerable to latchup than those operating at 5V. Other 
high current anomalies, including snapback and 
possible breakdown, should also be reduced at lower 
bias levels. 
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Rg. 9. Results of SPICE Simulations 

The range of threshold LET values for devices in the 
FACT technology family was markedly compressed at 
3.3V in comparison to 5V. This suggests that it may be 
possible to characterize the SEU vulnerability of an 
entire family of device types at 3.3V by testing only a 
few sample types. 

However, the relationship observed between 
threshold LET and bias voltage was irregular, and 
varied from one device type to the next. For some 
device types the threshold increased, relatively 
smoothly as the bias was increased, whereas others 
exhibited abrupt increases. Because of these 
irregularities, SEU results obtained at 5V cannot 
reliably be extrapolated to 3.3V. 
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